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Abstract: The Glasgow Coma Score (GCS) is statistically dubious because its calculation assumes that (a) the diagnostic 

scores used to assess degree of consciousness are numerical and (b) there is an implied metric. The assessed diagnostic scores 

are, however, categorical and there exists no metric; hence, summing is neither permitted nor medically informative. Novel 

methods: In this paper, we statistically analyze the Glasgow Coma Triples (GCTs) of 162 patients (114 males; 48 females; aged 

3–93 years) by using unsupervised machine-learning techniques: first, one-hot encoding; second, a dimension reduction 

autoencoder; and finally KDE (Kernel Density Estimation). Results: We find that this sequence can classify how the resulting 

segmentation (triage) results in (a) the dead patients clustering separately from the survivors, and (b) the survivors clustering 

into five groups with different hospital discharge outcomes: from those with GCT={1,1,1} to those with GCT={4,6,5}, albeit 

with varying trajectories. Conclusions: The use of machine learning techniques can uncover the medical progressions of TBI 

patients that are impossible to discover using conventional GCS analysis. We also find a triage for outcomes, including five 

clusters for surviving patients. Further research is needed to verify what medically determines these varying trajectories and 

their ranges in probabilities; using GCS cannot contribute to these extended investigations, however. 

Keywords: Traumatic Brain Injury, Glasgow Coma Score, Kernel Density Estimation, Dimension Reduction,  

Feature Extraction, Triage, Unsupervised Machine Learning, Glasgow Coma Triples 

 

1. Introduction 

The Glasgow Coma Scale is an index derived by summing 

three response assessments: eye, verbal, and motor responses. 

[1] The summing [2] is only possible if one assumes that the 

ordinal number on the response scale can be converted to a 

cardinal number (a computable number) — an assumption 

we challenge in this paper (and we are not the first to do so 

[3]). Each response is assessed by a clinician or other 

medical staff [4] involved in emergency services (for 

example, at the scene of an accident prior to transportation to 

a hospital) using the modern version of the assessment 

scaling (i.e., the revised Glasgow Coma Scale): 1–4 (eye), 1–

6 (verbal), and 1–5 (motor). Conventionally, the three 

assigned scores are summed, based on the aforementioned 

assumptions, to provide an index that, it is widely claimed, 

reveals a victim’s (patient’s) level of consciousness. 

The criteria for assigning the response scores are 

ubiquitous in the published literature, so we do not list them 

here. It suffices to say that the lowest score (GCS � 3) is the 

lowest level of consciousness (actually: “consciousness non-

existent”) and GCS � 15  describes the lack of detectable 

brain injury influencing consciousness (so assessed), based 

on this scoring method. 

Many clinicians consider this scale to be both useful and 

helpful [3, 4], despite a plethora of critiques. [5–7] (Green 
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[5] describes it as a “sacred cow”.) For clinicians, an 

attractive feature is the ability to assess (in their perception) 

the severity of damage in the case of TBI (Traumatic Brain 

Injury): GCS < 9  is considered severe. Evidently one 

(medicine-based) critique is whether three responses suffice 

to diagnose brain injury severity and/or level of 

consciousness. Another critique is statistical in nature: 

whether the assessment is particularly sensitive to lack of 

inter-rater reliability [6, 7]. Other scaling methods have 

been proposed [8]. Nonetheless, after reviewing the 

literature, we perceive a widespread consensus among 

clinicians that GCS is considered useful, despite its 

shortcomings. We agree with those that dispute its 

usefulness (see [5] for a listing). In this paper, we elucidate 

a further facet of why its usefulness is not clinically helpful, 

even if its usefulness may exist at the extremes (GCS = 3 

and GCS > 13; [9]). 

Our critique of using this sum of the three response 

assessments (henceforth called an index, although it isn’t 

one) deals with another difficulty, which we address in this 

paper. Each score for each response is not a number, but 

rather a (ranked) categorical variable. The three response 

scores are the components of a vector, which we henceforth 

label GCT (Glasgow Coma Triple). Adding categorical 

variables is not permitted in any statistical analyses [3]; we 

therefore argue that the sum obfuscates rather than reveals 

medical information about levels of consciousness between 

“deeply unconscious” and “fully conscious.” This 

shortcoming can be easily recognized if we convert the 

(categorical) scores from (ordinal) integers to letters from 

some alphabet. Thus, for example, a diagnosis of {1,3,2} 

would be replaced by a diagnosis {A, C, B}. In so doing it is 

impossible to calculate GCS = 1 + 3 + 2 = 6 ≠ A + B + C, 

because A + C + B is undefined. We refute the suggestion to 

replace the letters with cardinal integers to calculate the 

score, because the replacement implies a metric: the 

“distance” from 2 to 4 on a (cardinal) integer scale is the 

same as from 1 to 3, while it is not on an ordinal scale (nor 

is it, arguably, a medically sound procedure). We suspect 

that no review of GCS’s utility has tested this implied 

metric as supported by statistical analyses (see, in addition, 

[5]). There have been attempts to overcome this scale 

choice, which appears to be the result of a habit, as 

suggested by the authors of the original article [1], but not 

justified by a rigorous statistical assessment. An attempt to 

overcome this scale choice is the Extended Early Barthel 

Index [9, 10]. Some responses are to be assigned “–50”, 

some “+5”, and some “+10”; the sum of diagnosed 

responses is then the Barthel index. Where do these 

numbers come from? Or, more precisely: what statistical 

analysis was used to construct such a metric, differing as it 

does from the Glasgow Coma Scale metric? 

Another criticism is the ambiguity due to the summation 

used to compute the score. There are 14 different triples that 

have the same GCS = 7 (Table 1 and Figure 1). We question 

whether these triples measure the same consciousness level, 

let alone brain injury severity — indeed, we will show that 

they do not. 

The claim that GCS assesses consciousness level implies a 

definition of consciousness which is at variance with the 

medical condition of a TBI patient. In summary: we 

investigate the implications by statistically analyzing the 

triples of categorical variables (the assessments/scores), 

rather than following the conventional procedure of 

converting the scores to cardinal numbers, assigning a metric 

to the categorical scores while doing so, and subsequently 

summing them to a single number/index for each patient at 

the time he/she is diagnosed. One could ask whether the 

resulting GCS is itself a categorical or metric variable. 

However, because we reject (and justify the rejection of) the 

procedure for calculating GCS, we need not address the issue 

of whether GCS is (or isn’t) a categorical variable. 

Categorical variables can be encoded without a metric, but 

in a higher-dimensional space. One-hot encoding constructs 

the registrations in this space. Each patient is represented by 

a set of points in this high-dimensional space (it will be a 

space of 51 dimensions in this paper), but the nonzero 

scorings (components) in this space are not independent, so 

we apply methods of dimension reduction to derive a metric 

that can then be analyzed by modern unsupervised ML 

(machine learning) techniques — specifically, by finding a 

non-parametric probability density function over the space of 

reduced dimensionality. We discover that the brain injury 

severity is not uniformly distributed in this space and each 

cluster (group) of patients has different, medically inferable 

characterizations. Remarkably, as we show, conventional 

GCS within each group is not uniformly distributed — one 

(further) argument we use to request abstaining from the use 

of GCS as a medical indicator. 

 

Figure 1. The distribution of Glasgow Coma Triples with Glasgow Coma 

Score ��� = 7 . The Manhattan distance between the lowest GCS (i.e. 

��� = {1,1,1}) and the score ��� = 7 is 4, and there are 14 possibilities 

for patients to have this diagnosis ��� = 7. 
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Figure 2. The (non-parametric) pdf of ages (estimated using KDE) of the TBI patients in this sample. The pdf is almost constant over a large part of its range, 

indicating that inferences found in this paper are hardly age-dependent. Superimposed on the pdf is the histogram of the ages of the individuals. There are two 

individuals younger than 5 years and one individual older than 90 years. Point estimators are listed in Table 2. The mode (which cannot be estimated from the 

raw data) is at 47.9 years, the �����%	(highest density 95%-confidence interval; [17]) is from 7.2 years to 90.7 years. We note that this uncertainty interval is 

not symmetric about the mode and is not derived via point estimators. 

Table 1. The number of possible triples that yield the same GCS (Glasgow 

Coma Score), listed by increasing GCS. Clearly, as GCS increases, the 

number of possible triples initially increases. The score ��� � 7, below 

which intervention is oftentimes considered medically critical, describes 14 

different triples (see Figure 2); and for ��� ≤ 7 there exist 34 different 

critical conditions. In this paper, we argue that these 34 different conditions 

are insufficiently medically differentiated by the five different integers from 

��� � 3 to ��� = 7. 

Glasgow Coma Score Number of possible Triples 

3 1 

4 3 

5 6 

6 10 

7 14 

8 17 

9 18 

10 17 

11 14 

12 10 

13 6 

14 3 

15 1 

2. Materials & Methods 

The data set consists of 162 TBI patients (114 males and 

48 females; further parameter characterizations in Table 2) 

that were brought to our trauma center for emergency 

treatment. Each patient’s GCT was diagnosed three times 

(not necessarily by the same clinician): (a) after leaving the 

trauma room and being accepted in the ICU, (b) after 

discharge from the ICU, and (c) after discharge from the 

hospital (Table 3). Not all TBI patients were alive at 

discharge; indeed, some died even before acceptance to the 

ICU. Whether a TBI victim was alive at each of these 

assessment times was also registered. At discharge, 128 

patients were alive (89 males and 39 females); 31 died in the 

ICU (22 males and 9 females), and 3 were dead prior to 

acceptance in the ICU (only males). The age ranges, point 

estimators, and the HDI95% uncertainty estimator are listed in 

Table 2 and illustrated in Figure 2. 

To justify our rejection of calculating a sum of the 

Glasgow Coma scores, we dispute the approach of inferring 

the simplifying assumptions about the distributions of 

categorical variables (a  c!-distribution, for instance) and the 

results of tallying techniques displayed as bar charts. The 

scores of the categorical variables may or may not be 

independent. For example, GCS = 1 + 1 + 1 = 3  (in the 

conventional index calculation) may either indicate that a 

victim is dead or deeply unconscious. Using statistically 

detectable dependencies can remove this and other 

ambiguities (see below). Even more important, however, is 

presenting groups of TBI severities that cannot be revealed 

by converting categorical variables to cardinal integers and 

then calculating the sum of these converted responses. 

We will infer a metric (albeit not explicitly, but one 

derived using a neural network algorithm) to replace the 

triples of GCT. ML techniques, primarily unsupervised 

dimension reduction algorithms [11], specifically auto-

encoders [12–15], can then map the GCT into a lower-

dimensional subspace (in this paper a 2D subspace — 

namely, a plane). 

In the AI (artificial intelligence) world, unsupervised 

learning is standard; in the medical world of statistical 

analysis, it seems to be novel — or at least not widespread. 

We know of one prediction model using ML [16]; it does not, 

however, use unsupervised learning (rather, it uses other AI 

techniques for outcome evaluation [12, 13] that differ from 

the ones presented in this paper). In the next analysis step, 

the KDE (Kernel Density Estimation) algorithm [14] uses as 
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input what has been ‘learned’ and outputted by the auto-

encoder algorithm. 

One-hot encoding: The response registrations in the 

Glasgow Coma scenario are categorical variables. Prior to 

statistical analyses, the categorical variable scorings are 

encoded via the one-hot encoding algorithm (an example is 

shown in Figure 3), into points in an appropriate multi-

dimensional space (details are elucidated in the caption of 

Figure 3). Each patient’s responses are therefore represented 

by a 51-dimensional feature vector. 

Dimension reduction: The scorings in the (here) 51-

dimensional space are not independent. An unsupervised 

dimension reduction algorithm (here: a neural network 

autoencoder with 7 layers) finds non-linear combinations of 

the feature vector scorings that can be mapped to a space of 

lower dimension (in the present analyses: 2-dimensional). 

Kernel Density Estimation: Each patient’s feature vector 

has been reduced to a point in a 2-dimensional (Euclidean) 

space. We apply a KDE [14] algorithm to the distribution of 

points in this plane to find a non-parametric pdf (probability 

density function; Figure 4) with an optimum Parzen window 

(found by the KDE algorithm). 

Segmentation: The pdf shows marked peaks (Figure 4). We 

search for a threshold likelihood to segment these. We thus 

obtain five specific regions (Figure 5) with likelihoods higher 

than their environs, which we call groups in the subsequent 

analyses. As each patient is a point in the reduced 2-

dimensional space, we use Monte Carlo integration (by 

generating 130000 points randomly distributed according to 

the pdf) to determine the relative probability of patients’ 

being in one of these five groups. Each patient in each group 

can be characterized by his/her initial, intermediate and final 

GCT (not: GCS). We look for — and find — medical 

characteristics the patients in each group have in common. 

We also succeed in an extended triage; the deceased patients 

are segmented via the unsupervised algorithms into a further, 

separate group. 

Table 2. Age parameters of the 162 TBI patients. The point estimators 

(means) are not meaningfully interpretable; preferable is the 95% highest 

density uncertainty interval (HDI95% [17]) and the mode (Figure 2). 

Age range (years) 3–93 

Point Estimators: 

    mean (years) 48.35 

    mean� (years) 46.41 

    mean� (years) 52.65 

HDI95% (years) 7.2–90.7 

Mode (years) 47.9 

Table 3. Classification of the GCTs at the three times for all 128 surviving 

patients. 

Time 
frequency of 

"#$ � {%, %, %} 

frequency of 

"#$ ≠ {%, %, %} 

Post Trauma Room 82 46 

Post ICU 75 53 

Post Hospital 9 119 

 

Figure 3. Application of the algorithm that uses one-hot encoding to convert 

a listing of categorical variables into a multidimensional feature vector, 

exemplified for individual No. 83. The three Glasgow Coma triples are 

���& � {1,3,1} = {', �, '} , ���! = {2,4,2} = {), �,)} , and ���* =

{3,6,1} = {�, +, '} ; the respective GCSs are: ���& = 5 , ���! = 8 , and 

���* = 10. The diagnosed responses are categorical variables that have 

been illustrated as (capital) letters from the Latin alphabet. The resultant 51-

dimensional feature vector is a string of 0s and 1s. For illustration purposes, 

the components that are nonzero have been highlighted in red (thereby 

explaining the name for the algorithm: hot wires are insinuated to glow red). 

We note that there is an inherent interdependence between the components of 

this feature vector. If, as in this example, the 7th component is “1”, then the 

5th, 6th, 8th, 9th, and 10th components must be “0”. Also: if the 50th component 

is “1” (as here), then the 51st component must be “0”; furthermore: the 16th 

and the 33rd component must be “1”, while the 17th and the 34th component 

must be “0”. 
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Figure 4. The pdf (probability density function) of the dimension-reduced GCTs of the surviving patients, superimposed on the scaled bar chart of frequencies 

of the individual survivors’ 2D-scores (shown as stacked cubes). The pdf has been estimated using a KDE algorithm. The bar chart exhibits a ‘natural’ 

binning, because it can be identical for several surviving patients. The color-coding of the pdf shows there are five groups of high likelihood (beyond brown) 

for survivors. The bar chart entries (frequencies) of lowest likelihood (rendered as height in the graph) are singletons. We observe that the very high likelihood 

2D-scores are only within the five groups. The scales along the two (horizontal) axes have no direct medical interpretation; they are therefore unlabeled. 

 

Figure 5. The projection of the KDE-derived pdf of the dimension-reduced coordinates of the three GCTs of the surviving TBI patients. Superimposed are the 

coordinates of the 2D-scores and the segmentation results. The white contour lines help reading the graph; they are of no importance for the analyses. The 

black contour lines and the black dots with white centers are the coordinates of the 34 TBI patients that did not survive. Their 2D-scores are also segmented. 

However, in this paper we do not analyze these segmentations (we are only investigating the temporal progression of the survivors’ GCTs). We observe that the 

2D-scores of the TBI patients who died do not overlap the 2D-scores of the 128 TBI survivors — an indicator that the unsupervised dimension reduction 

algorithm is highly successful and the pdf derived via KDE must be considered reliable. 
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Figure 6. The temporal evolution of GCTs of 128 TBI patients that were still alive post hospital displayed by groups identified by KDE segmentation (Figure 

4). The initial GCT (post TR) is displayed as a magenta cube, the intermediate GCT (post ICU) as a blue cube, and the final outcome (post hospital) as a green 

cube. The arrows indicate the direction of temporal evolution. In Group I and Group V, all patients regain full or almost full consciousness; in Group I, 

patients enter the ICU essentially unconscious, while in Group V, patients enter the ICU with reasonably high levels of consciousness, these levels drop by the 

time of discharge from the ICU, and the reasonably high levels of consciousness are regained before discharge from the hospital. Group II is displayed in two 

different orientations to ease readability: in this group, the final eye response is high (3–4), but verbal and motor response vary over the whole range (verbal: 

1–6; motor: 1–5). In Group III, all patients are unconscious prior to entering the ICU and do not regain consciousness at discharge from the hospital. In 

Group IV, most patients regain a high level of consciousness, except for one type of outcome: high visual response and intermediate verbal response and no 

motor response. In all graphs, the multiplicity of each cube is not rendered; therefore, the graphs do not show the frequencies of the outcomes. The 

probabilities of outcomes are listed in Table 4. We note that these differentiating descriptions cannot be detected using GCSs. 
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Figure 7. The distribution of GCSs at the three times we analyze in this data 

set. The distribution includes all 162 TBI survivors and non-survivors. Upon 

admission to the ICU, most patients had ��� � {1,1,1}, and at hospital 

discharge, most had ��� = {4,6,5}  (Table 3). This paper deals with 

analyzing as to whether GCS, in contrast to GCT, can be considered 

medically sound because most clinicians argue that it informs adequately; 

we argue that GCS does not. Bizarrely, none of the patients had ��� = 5 or 

��� = 12 at hospital discharge. 

Table 4. Tabulation of the GCTs relative probabilities and frequencies of 

occurrence for the 128 patients that were alive at discharge from the 

hospital. We note that very few survivors remain at the state ��� = {1,1,1} 

(equivalent to ��� = 3 — unconscious survivors) at hospital discharge; the 

probability is 5.8% for a patient being alive at this low level of 

consciousness. The increase in the number of triples ��� ≠ {1,1,1} 

necessitates investigating the temporal evolution of GCT of the patients that 

remained alive at discharge from the hospital (Figure 6), not how the GCSs 

with ��� > 3 are distributed. 

a 

Group I II 

Probability (%) 27.2 52.6 

initial 
{1,1,1} 25 {1,1,1} 48 

{1,2,1} 1 {1,2,1} 1 

final 

{3,6,4} 1 {3,3,3} 1 

{4,5,5} 1 {3,5,1} 1 

{4,6,4} 2 {3,5,2} 1 

{4,6,5} 22 {3,6,2} 1 

 

{3,6,4} 1 

{4,1,1} 1 

{4,2,1} 1 

{4,4,1} 1 

{4,5,1} 1 

{4,5,4} 1 

{4,6,1} 2 

{4,6,3} 1 

{4,6,4} 6 

{4,6,5} 30 

b 

Group III IV V 

Probability (%) 5.8 1.7 12.6 

initial 

{1,1,1} 7 {1,3,2} 1 {2,4,2} 2 

 

{2,1,1} 1 {2,4,3} 1 

{2,2,1} 1 {2,5,3} 1 

 

{2,5,4} 2 

{4,6,4} 3 

{4,6,5} 4 

final 

{1,1,1} 6 {2,2,2} 1 {3,6,5} 1 

{1,2,1} 1 {4,6,4} 1 {4,6,4} 3 

 {4,6,5} 1 {4,6,5} 9 

3. Results 

Clustering into five groups: The segmentation results in 

five groups (Figure 5) of survivors, with probabilities 

1.2% < /01234 < 36.3% (Table 4). These probabilities have 

not been calculated as point estimators derived from patient 

occurrence frequencies, but rather by Monte Carlo 

integration of the group regions defined via the pdf (Figure 

4). Group membership accounts for 68.9%  of all cases 

observed of alive patients. Two groups account for almost 

55.5% of these cases. All triples outside these five groups, 

accounting for 28 (of 128) scorings, are singletons. Each of 

their likelihoods is below pdf threshold (likelihood 

threshold). We are surprised that so many patients can be 

described by so few groups of Glasgow Coma Triples. 

Properties of the five groups: The groups vary considerably 

in size and in membership frequencies (Table 4). Patients in 

Group I and Group II have initial triples {1,1,1}  and very 

rarely (only 2 of 75 patients) {1,2,1} . Arguably, GCT =

{1,2,1}  can be considered, in the context of the analyses 

presented here, as no different from GCT = {1,1,1}, given the 

uncertainty of the boundary in the assessment by a clinician of 

the patient’s response at such low levels of consciousness. The 

patients in Group III, with a probability /61234	777 = 4.0% are 

the ones with the (medically) bleakest outlook (Table 4 and 

Figure 6); none regained any semblance to higher states of 

consciousness at hospital discharge. Group IV, with the lowest 

probability ( /61234	78 = 1.2% ), is a group with no 

straightforwardly identifiable pattern: some patients regained 

high levels of consciousness, while some did not. We argue 

that the smallness of the group may include statistical 

fluctuations that mask any pattern. In Group V, patients’ initial 

responses are characterized by the highest number of different 

GCTs (namely six) of all groups: from GCT = {2,4,2}  to 

GCT = {4,6,5} (we note in passing that the initial GCSs are 

8, 9, 10, 11, 14, 15 — they are neither consecutive nor are they 

unique to this group). Occurrence of patients in Group V has 

the 3
rd

 highest probability (/61234	8 = 8.7%), and the patients’ 

outcome triple components are high ({3,6,5} , {4,6,4} , and 

{4,6,5}). These triples also occur in other groups, so summing 

the outcome triples in Group V to form GCSs is neither useful 

for uniquely characterizing TBI patients, nor helpful for 

segmentation purposes, nor (medically) meaningful in order to 

predict patient outcomes (Figure 6). 

The method we use in this paper also indicates an 

additional triage: the patients who did not survive is 

manifested in the KDE pdf. Interestingly, the GCSs in each of 

these groups do not allow for a distinction, while the GCTs 

do. Relying on GCSs therefore masks information that the 

GCTs contain. 

4. Discussion 

By showing how the survivors’ GCTs segment into five 

groups, while the GCSs do not (Figure 7), we can document 
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that computing indices is neither statistically meaningful 

(because of allowing arithmetic operations for categorical 

variables), nor medically useful (the consciousness statuses 

of different patients with the same GCS have very different 

progressions over time). Indeed, a histogram of the 

occurrences of the GCSs (Figure 7) shows no pattern that 

reveals the temporal evolution of the patients during their 

transition from pre-ICU to hospital discharge. 

The segmentation result also shows which patients did not 

survive prior to hospital discharge (Figure 5) — a 

segmentation result that had not been explicitly included in 

the programming code before we began the analysis. The 

segmentation method thus also supplies a triage: segmenting 

the five groups of survivors from the deceased. 

Clinicians are — and rightfully so — interested in 

whether the patients in each survivor group have further 

identifiable diagnostic characteristics. We too are 

interested in such dependencies on other variables. 

Clusters of GCSs, we have shown, are not meaningful and 

only after segmentation of GCTs can meaningful 

associations be found. More rigorously stated: in this 

paper we have shown that GCSs are not only insufficiently 

informative, but also unable to reveal any differentiation 

of the clinical picture of TBI patients. 

The segmentation of the survivors into five groups also 

describes a progress within the ICU and an outcome 

comparable to GOSE. Rather than relying on GOSE 

diagnosis criteria, the suite of algorithms we used predicts 

five types of ICU progression (for the survivors) and three 

types of outcome (Groups I, IV, and V have the same post-

ICU outcome). 

5. Conclusion 

We argue that the novel approach of using unsupervised ML 

can uncover medical characterizations of TBI patients that are 

impossible to discover using only the temporal sequence of 

three GCSs. We would like to add that, by using unsupervised 

ML and the presented sequence of further algorithms, we 

avoid fallacies involving assignments of cardinal numbers to 

categorical variables and relying on the conventional GCS 

metric that has not been statistically derived. 

This sequence of analysis steps (one-hot-encoding → 

dimension reduction → KDE of non-parametric pdf → 

segmentation) is unsupervised. Nowhere in the calculations 

are parameters chosen by us, the authors, except for our 

choice of threshold (Figure 4) after the completion of all 

algorithm executions. Other algorithms for segmentation 

exist; we chose segmentation via non-parametric pdf 

thresholds. 

We can use unsupervised ML to analyze the categorical 

response assessments that clinicians perform to estimate 

(among other things) the level of consciousness of TBI 

patients. We show that the outcomes of ML segmentation are 

much more informative about TBI patients’ consciousness 

landscape than GCSs would lead a clinician to suspect. We 

can show that the 128 TBI post-hospital survivors 

predominantly fall into five groups. These groups differ in 

how their consciousness levels progress in time during their 

stay in the ICU. 

Understandably, a clinician would like to have 

‘beforehand’ information as to what the outcome likelihoods 

for patients delivered to the trauma room will be. This is very 

challenging. As we show in this article, using the Glasgow 

Coma Score is not helpful; it is, in fact, misleading. On the 

other hand, our segmentation using unsupervised ML can 

supply a triage (not only of deaths versus survival, but also 

different survival profiles) and also point out that, at 

discharge from the ICU, patients with the same GCS have 

vastly different GCTs. By implication, there must be other 

parameters that differentiate the outcomes. Further research 

is required to identify these. 
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